Homework 1. Linear Algebra. Spring 2022. Prof. Pineiro

Print Name: \qquad

1. Solve the following systems by Gauss-Jordan elimination. Determine if we have infinitely many solutions, unique solutions or no solutions
(a)

$$
\left\{\begin{aligned}
3 x+y-z & =1 \\
x-2 y+z & =-3 \\
-2 x+2 y+z & =5
\end{aligned}\right.
$$

(b)

$$
\left\{\begin{aligned}
2 x_{1}+3 x_{2}+x_{3}-4 x_{4} & =-5 \\
-x_{1}+x_{2}+2 x_{3}+x_{4} & =3 \\
-3 x_{1}+2 x_{2}+2 x_{3}-x_{4} & =2
\end{aligned}\right.
$$

(c)

$$
\left\{\begin{aligned}
x_{1}+x_{2}+x_{3}-4 x_{4} & =-5 \\
-x_{1}+x_{2}+2 x_{3}+x_{4} & =3 \\
x_{3}-x_{4} & =2
\end{aligned}\right.
$$

2. Find the value(s) of k so that the following linear system is consistent (that is, has at least one solution)

$$
\begin{aligned}
& 3 x+5 y=4 \\
& 9 x+k y=-1
\end{aligned}
$$

3. Given the following homogeneous system of equations:

$$
\left\{\begin{aligned}
x+y+z & =0 \\
x+2 y+3 z & =0 \\
-x+3 y-z & =0
\end{aligned}\right.
$$

(a) Would it be possible for the system to be inconsistent?
(b) Find the row reduced echelon form.
(c) Find the solution.
4. Find (if possible) the inverse of the matrix $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 3 & 1 & 0 \\ 1 & 1 & 2\end{array}\right)$ using the process of row-reduction.
5. Find (if possible) the inverse of the matrix $A=\left(\begin{array}{ccc}3 & 2 & 3 \\ -4 & -4 & 5 \\ 1 & 1 & 1\end{array}\right)$ using the process of row-reduction.
6. Given the matrices:

$$
A=\left(\begin{array}{cc}
4 & 1 \\
-3 & 0 \\
3 & 5
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc}
1 & 4 & -1 \\
1 & 2 & -1
\end{array}\right)
$$

Find $A \cdot B$ and $B \cdot A$.
7. Check that the inverse you found in question (4) satisfy the equation:

$$
A \cdot A^{-1}=A^{-1} \cdot A=I_{3} .
$$

